References
1,4-Hydrosilylation:
<A NAME="RU13104ST-1A">1a</A>
Speier JL.
Webster JA.
Barnes GH.
J. Am. Chem. Soc.
1957,
79:
974
<A NAME="RU13104ST-1B">1b</A>
Bourhis R.
Frainnet E.
Moulines F.
J. Organomet. Chem.
1977,
141:
157
<A NAME="RU13104ST-1C">1c</A>
Barlow AP.
Boag NM.
Stone GA.
J. Organomet. Chem.
1980,
191:
39
<A NAME="RU13104ST-1D">1d</A>
Kogure T.
Ojima I.
Organometallics
1982,
1:
1390
<A NAME="RU13104ST-1E">1e</A>
Mahoney WS.
Stryker JM.
J. Am. Chem. Soc.
1989,
111:
8818
<A NAME="RU13104ST-1F">1f</A>
Hilty TK.
Revis A.
J. Org. Chem.
1990,
55:
2972
<A NAME="RU13104ST-1G">1g</A>
Chan TH.
Zheng GZ.
Tetrahedron Lett.
1993,
34:
3095
<A NAME="RU13104ST-1H">1h</A>
Johnson CR.
Raheja RK.
J. Org. Chem.
1994,
59:
2287
<A NAME="RU13104ST-1I">1i</A>
Lipshutz BH.
Keith J.
Papa P.
Vivian R.
Tetrahedron Lett.
1998,
39:
4627
<A NAME="RU13104ST-1J">1j</A>
Appella DH.
Moritani Y.
Shintani R.
Ferreira EM.
Buchwald SL.
J. Am. Chem. Soc.
1999,
121:
9473
<A NAME="RU13104ST-1K">1k</A>
Lipshutz BH.
Chrisman W.
Noson K.
Papa P.
Sclafani JA.
Vivian RW.
Keith JM.
Tetrahedron
2000,
56:
2779
<A NAME="RU13104ST-2">2</A> 1,4-Hydroboration:
Evans DA.
Fu GC.
J. Org. Chem.
1990,
55:
5678
1,4-Hydroalumination:
<A NAME="RU13104ST-3A">3a</A>
Tsuda T.
Hayashi T.
Satomi H.
Kawamoto T.
Saegusa T.
J. Org. Chem.
1986,
51:
537
<A NAME="RU13104ST-3B">3b</A>
Ikeno T.
Kimura T.
Ohtsuka Y.
Yamada T.
Synlett
1999,
96
1,4-Hydrostannylation:
<A NAME="RU13104ST-4A">4a</A>
Four P.
Guibe P.
Tetrahedron Lett.
1982,
23:
1825
<A NAME="RU13104ST-4B">4b</A>
Keinan E.
Gleize PA.
Tetrahedron Lett.
1982,
23:
477
<A NAME="RU13104ST-5">5</A>
Huddleston RR.
Krische MJ.
Synlett
2003,
12
<A NAME="RU13104ST-6A">6a</A>
Revis A.
Hilty TK.
Tetrahedron Lett.
1987,
28:
4809
<A NAME="RU13104ST-6B">6b</A>
Isayama S.
Mukaiyama T.
Chem. Lett.
1989,
2005
<A NAME="RU13104ST-6C">6c</A>
Matsuda I.
Takahashi K.
Sato S.
Tetrahedron Lett.
1990,
31:
5331
<A NAME="RU13104ST-6D">6d</A>
Kiyooka S.
Shimizu A.
Torii S.
Tetrahedron Lett.
1998,
39:
5237
<A NAME="RU13104ST-6E">6e</A>
Taylor SJ.
Morken JP.
J. Am. Chem. Soc.
1999,
121:
12202
<A NAME="RU13104ST-6F">6f</A>
Ooi T.
Doda K.
Sakai D.
Maruoka K.
Tetrahedron Lett.
1999,
40:
2133
<A NAME="RU13104ST-6G">6g</A>
Taylor SJ.
Duffey MO.
Morken JP.
J. Am. Chem. Soc.
2000,
122:
4528
<A NAME="RU13104ST-6H">6h</A>
Zhao C.-X.
Duffey MO.
Taylor SJ.
Morken JP.
Org. Lett.
2001,
3:
1829
<A NAME="RU13104ST-7A">7a</A>
Baik T.-G.
Luis AL.
Wang L.-C.
Krische MJ.
J. Am. Chem. Soc.
2001,
123:
5112
<A NAME="RU13104ST-7B">7b</A>
Wang L.-C.
Jang H.-Y.
Roh Y.
Lynch V.
Schultz AJ.
Wang X.
Krische MJ.
J. Am. Chem. Soc.
2002,
124:
9448
<A NAME="RU13104ST-7C">7c</A>
Jang H.-Y.
Huddleston RR.
Krische MJ.
J. Am. Chem. Soc.
2002,
124:
15156
<A NAME="RU13104ST-7D">7d</A>
Huddleston RR.
Krische MJ.
Org. Lett.
2003,
5:
1143
Ranu et al. have reported the InCl3-catalyzed 1,4-reduction of electron-deficient alkenes with NaBH4. See:
<A NAME="RU13104ST-8A">8a</A>
Ranu BC.
Samanta S.
Tetrahedron Lett.
2002,
43:
7405
<A NAME="RU13104ST-8B">8b</A>
Ranu BC.
Samanta S.
J. Org. Chem.
2003,
68:
7130
<A NAME="RU13104ST-9">9</A> Quite recently, Baba et al. have reported a similar catalytic system for reductive
aldol reaction, in which InBr3 and Et3SiH are used as catalyst and reducing agent, respectively. See:
Shibata I.
Kato H.
Ishida T.
Yasuda M.
Baba A.
Angew. Chem. Int. Ed.
2004,
43:
711
<A NAME="RU13104ST-10">10</A>
The use of In(acac)3 (acac = acetylacetonate) instead of In(OAc)3 gave 2a and 3a in 34% and 65% yields, respectively. InCl3 also promoted the reaction of 1a with PhSiH3 in Et2O at r.t. (2a, 29%; 3a, 49%).
<A NAME="RU13104ST-11">11</A>
The use of other hydrosilanes [Et3SiH, PhMe2SiH, poly(methylhydrosiloxane)] instead of PhSiH3 resulted in no reduction under the same conditions.
<A NAME="RU13104ST-12">12</A>
The use of a half amount of PhSiH3 lowered the yield to 62%.
<A NAME="RU13104ST-13">13</A>
Abernethy CD.
Cole ML.
Jones C.
Organometallics
2000,
19:
4852
<A NAME="RU13104ST-14">14</A>
General Procedure for the In(OAc)
3
-Catalyzed 1,4-Reduction of α-Enones with PhSiH
3
: Under N2, α-enone 1 (0.50 mmol) and PhSiH3 (54 mg, 0.50 mmol) were added to a suspension of In(OAc)3 (15 mg, 0.05 mmol) in EtOH (1.0 mL). The mixture was stirred at r.t. for 1.5 h and
quenched with sat. aq NaHCO3. The extract with t-BuOMe was dried over Na2SO4 and evaporated. The residual oil was purified by silica gel column chromatography.
<A NAME="RU13104ST-15A">15a</A>
Inoue K.
Sawada A.
Shibata I.
Baba A.
J. Am. Chem. Soc.
2002,
124:
906
<A NAME="RU13104ST-15B">15b</A>
Inoue K.
Sawada A.
Shibata I.
Baba A.
Tetrahedron Lett.
2001,
42:
4661
<A NAME="RU13104ST-15C">15c</A>
Takami K.
Mikami S.
Yorimitsu H.
Shinokubo H.
Oshima K.
Tetrahedron
2003,
59:
6627
<A NAME="RU13104ST-16">16</A>
As shown here, the reductive aldol reaction is much slower than the 1,4-reduction.
This observation is attributable to slow regeneration of the indium hydride species
from the indium aldolate intermediate.
<A NAME="RU13104ST-17">17</A>
The In(OAc)3-catalyzed reduction of 6a with PhSiH3 (r.t., 1.5 h) gave 1-naphthylmethanol in 82% yield.
<A NAME="RU13104ST-18">18</A>
As proposed by Baba et al. (ref.
[9]
), the syn-selectivity can be attributed by the formation of Z-4b by a concerted hydroindation and the subsequent aldol addition via a cyclic transition
state. However, we have no evidence of the selective formation of Z-4b.
<A NAME="RU13104ST-19">19</A>
Typical Procedure for the In(OAc)
3
-Catalyzed Reductive Aldol Reaction of α-Enones with Aldehydes: Under N2, α-enone 1b (73 mg, 0.50 mmol), 6a (102 mg, 0.65 mmol), and PhSiH3 (54 mg, 0.50 mmol) were added to a suspension of In(OAc)3 (15 mg, 0.05 mmol) in EtOH (0.25 mL). The mixture was stirred at 0 °C for 36 h. The
work-up and purification were performed by the procedure described in ref.
[14]
. Compound 7ba (syn:anti = 92:8): IR (neat): 3540 (br s, OH), 1680 (C=O) cm-1. 1H NMR (270 MHz, CDCl3): δ = 0.69 (t, J = 7.6 Hz, 2.76 H), 0.86 (t, J = 7.6 Hz, 0.24 H), 1.63-1.79 (m, 1 H), 1.89-2.08 (m, 1 H), 3.52 (d, J = 5.9 Hz, 0.08 H), 3.80 (d, J = 1.7 Hz, 0.92 H), 3.96 (ddd, J = 9.1, 3.8, 3.6 Hz, 0.92 H), 4.11 (ddd, J = 8.2, 6.2, 5.9 Hz, 0.08 H), 5.82 (dd, J = 6.2, 5.9 Hz, 0.08 H), 5.85 (br s, 0.92 H), 7.31-7.96 (m, 12 H). 13C NMR (68 MHz, CDCl3) for the major isomer: δ = 12.25 (CH3), 20.17 (CH2), 51.62 (CH), 70.12 (CH), 122.49 (CH), 124.51 (CH), 125.28 (CH), 125.34 (CH), 126.04
(CH), 127.94 (CH), 128.38 (CH × 2), 128.75 (CH × 2), 129.14 (CH), 129.86 (C), 133.63
(CH), 133.73 (C), 136.69 (C), 137.22 (C), 206.37 (C). For the minor isomer (only well-resolved
peaks): δ = 11.88 (CH3), 24.18 (CH2), 53.14 (CH), 72.85 (CH), 123.01 (CH), 124.37 (CH), 125.48 (CH), 126.17 (CH), 128.07
(CH), 128.43 (CH), 129.03 (CH), 130.53 (C), 133.16 (CH), 138.15 (C), 206.08 (C).
<A NAME="RU13104ST-20">20</A>
The reaction of 1b with octanal was carried out in THF containing an equimolar amount of EtOH at 70
°C. However, both the yield of 7 and the syn-selectivity dropped to 52% and 56% syn, respectively.
According to the method reported by Montgomery et al., 8 and 14a were prepared by ozonolysis of cyclopentene and the subsequent Wittig olefination
with Ph3PCHC(O)Ph. This method was used also for the preparation of 12a, 12b, and 14b from 1-methylcyclopentene, 1,5-dimethyl-1,5-cyclooctadiene, and 1,5-cyclooctadiene,
respectively. See:
<A NAME="RU13104ST-21A">21a</A>
Montgomery J.
Savchenko AV.
Zhao Y.
J. Org. Chem.
1995,
60:
5699
<A NAME="RU13104ST-21B">21b</A> See also the following paper for the preparation of 12a and 12b:
Huddleston RR.
Cauble DF.
Krische MJ.
J. Org. Chem.
2003,
68:
11
<A NAME="RU13104ST-22">22</A>
For the stereochemical assignment of 9, 15a, and 15b, see ref.
[7a]
. The relative configurations of 13a and 13b were determined by their NMR data reported in ref.
[21b]
.
<A NAME="RU13104ST-23">23</A>
Krische et al. have reported cis-selective reductive aldol reactions of 8 and 12a, and trans-selective reductive Michael reaction of 14. See ref.
[7]
and ref.
[21b]